On a class of two-dimensional Einstein Finsler metrics of vanishing S-curvature
نویسندگان
چکیده
منابع مشابه
A class of Finsler metrics with almost vanishing H-curvature
In this paper, we study a class of Finsler metrics with orthogonal invariance. We find an equation that characterizes these Finsler metrics of almost vanishing H-curvature. As a consequence, we show that all orthogonally invariant Finsler metrics of almost vanishing H-curvature are of almost vanishing Ξ-curvature and corresponding one forms are exact, generalizing a result previously only known...
متن کاملTwo-Dimensional Finsler Metrics with Constant Curvature
We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.
متن کاملon a class of locally dually flat finsler metrics with isotropic s-curvature
dually flat finsler metrics form a special and valuable class of finsler metrics in finsler information geometry,which play a very important role in studying flat finsler information structure. in this paper, we prove that everylocally dually flat generalized randers metric with isotropic s-curvature is locally minkowskian.
متن کاملOn a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملon a special class of finsler metrics
in this paper, we study projective randers change and c-conformal change of p-reduciblemetrics. then we show that every p-reducible generalized landsberg metric of dimension n 2 must be alandsberg metric. this implies that on randers manifolds the notions of generalized landsberg metric andberwald metric are equivalent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2018
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2018.03.003